

Advanced cementitious materials, MSE 420

Lecture 10: SCMs and Limestone Calcined Clay Cement (LC3)

Dr. Beatrice Malchiodi 20 November 2024

Course Schedule

Wk#	Class date	Title	Lecturer
1	11/09/2024	Introduction/literature review	Prof. Karen Scrivener /Dr. Alastair Marsh
2	18/09/2024	Durability of cementitious materials	Dr. Beatrice Malchiodi
3	25/09/2024	Cement hydration	Prof. Karen Scrivener
4	02/10/2024	Characterisation techniques for cementiitous materials	Dr. Federica Boscaro
5	09/10/2024	Presentation 1	
6	16/10/2024	Admixtures	Dr. Federica Boscaro
7	30/10/2024	Presentation 2	
8	06/11/2024	LCA - Life Cycle Analysis	Dr. Alastair Marsh
9	13/11/2024	Sustainability approaches for construction	Dr. Alastair Marsh
10	20/11/2024	LC3 - Limestone Calcined Clay Cement	Dr. Beatrice Malchiodi
11	27/11/2024	Concrete design	Dr. Beatrice Malchiodi
12	04/12/2024	Concrete saving through a better structural design / Q&A on Presentation 3	Porf. David Ruggiero
13	11/12/2024	Presentation 3	
14	18/12/2024	08:15-09:00 Precast concrete, Sustainability in Concrete and Building Codes	Prof. David Fernandez-Ordoñez
		09:10-09:50 Circularity: Reuse of concrete elements	Prof. Corentin Fivet
		09:50-10:00 Semester projects at LMC	

Learning objectives

By the end of this class, you will be able to...

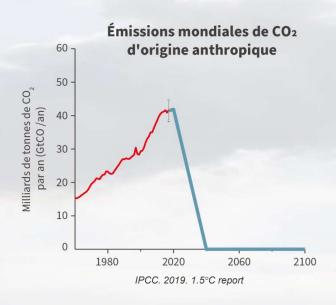
- Contextualise the importance of implementing blended cement.
- Define and identify different blended cements.
- Understand how to measure the reactivity of SCMs and evaluate their performance.
- Define the advantages of using LC3 amongst the other available SCMs
- Define the properties and best applications for LC3
- See the historical evolution of LC3 and its real and potential impact

Context: Why studying blended cement?

EPFL Global CO₂ emissions and the Construction sector Global Share of Buildings and Construction CO, **Projected Contributions from Embodied and Operational Emissions, 2021 Carbon within the Building Sector** From Current to 2050 with Business as Usual Projections Residential (Direct) 75% 51% of Building Sector Carbon of Building Sector Carbon Residential (Indirect) Non-Residential (Direct) 22% 37% Other Industry 22% Construction Industry 2021 2050 Business as Usual

Source: GlobalABC: Sustainable Building Materials Hub

Sustainable construction is key to achieving net zero


A radical transition is imperative:

Paris Agreement, 2015:
Keep global warming below 2°C, targeting 1.5°C

Actual global warming = 2.4°C

 $\frac{\textit{Intergovernmental Panel on Climate Change, 2018 and COP27:}}{\text{Halving CO}_2 \text{ emissions by 2030, carbon neutrality by 2050}}$

- Cut CO₂ emission in half in the next 10 years
- Reach net zero in 2050

Are there any other alternatives to concrete?

IN PRACTICE

'Over 90% of concrete used in construction could be replaced with timber'

20 JULY 2023 • BY FRAN WILLIAMS

https://www.architectsjournal.co.uk

I-M3
Institute of Materials
Minerals & Mining

Original Research Article

Concrete cracks, wood burns: Competing narratives in the construction sector

Pipiet Larasatie¹, Kathy Young² and Eric Hansen³

International Wood Products Journal 1–9 © The Author(s) 2024 Article reuse guidelines: sagepub.com/journals-permissions DOI: 10.1177/20426445241274848

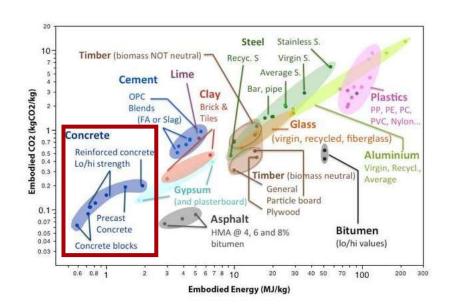
journals.sagepub.com/home/iwp

Are there any other alternatives to concrete?

- Among the most efficient building materials in terms of embodied environmental impact and embodied energy
- Outstanding properties i.e.:

Easy to manipulate by ow-skilled workers

Low cost

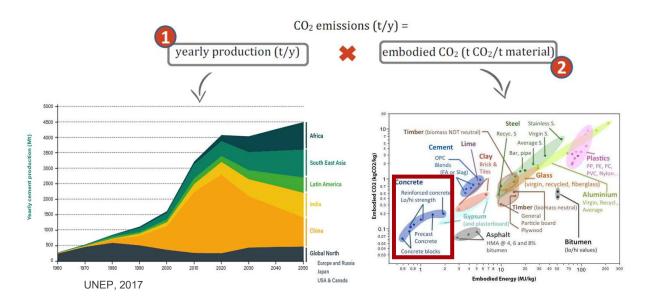

Robust

Durable

High strength

Different shapes

Raw materials are abundant and widely distributed



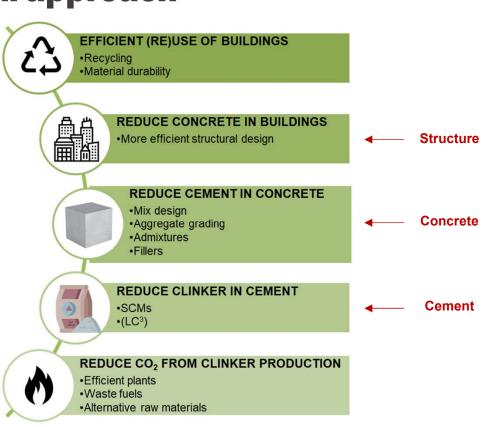
Concrete is an environmental friendly material, but...

We use a lot of it.

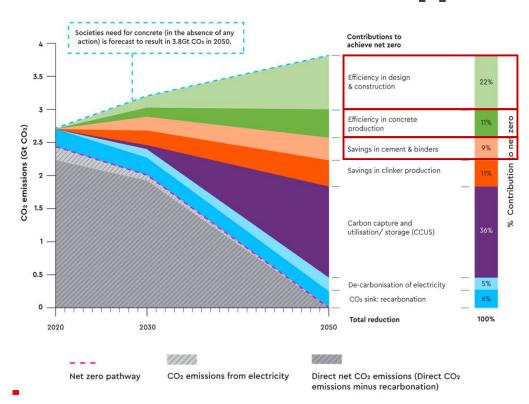
The demand for cement will come from Developing economies Need solutions for people in developing countries

Our Goal?

Reducing embodied carbon within the building sector by acting at different levels



A multidimensional approach

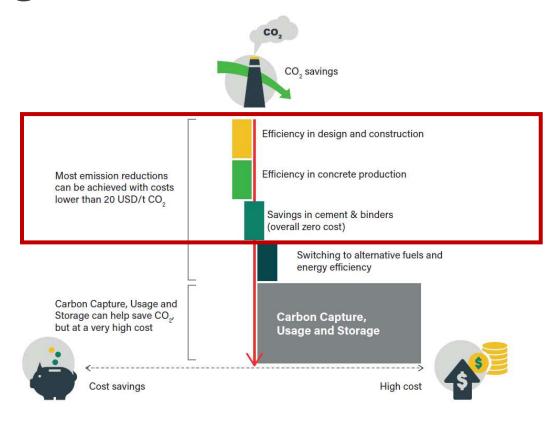


Recommended reading

A multidimensional approach - GCCA Roadmap

Structure

Concrete


Cement

Global Cement and Concrete Association (GCCA)

"The GCCA 2050 Net Zero Roadmap sets out in detail how collectively, in collaboration with built environment stakeholders and policymakers, we will fully decarbonize the cement and concrete industry and provide **net zero concrete** for the world." https://gccassociation.org/concretefuture/

Getting to net zero with little to no cost

GCCA 2021

nature communications

Article

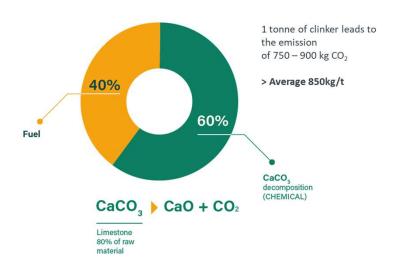
https://doi.org/10.1038/s41467-023-40302-0

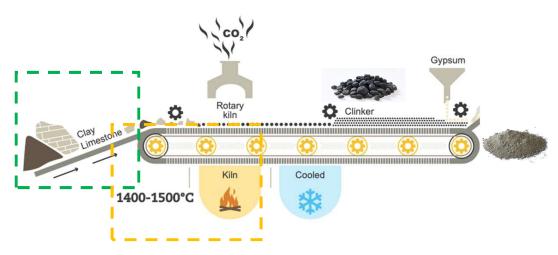
Near-term pathways for decarbonizing global concrete production

Received: 27 January 2023

Josefine A. Olsson ® 1, Sabbie A. Miller ® 1 ≤ & Mark G. Alexander ® 2

Accepted: 21 July 2023


Calculated **76%** with these strategies



Acting at cement level: SCMs and Blended cements

Origin of CO₂ emission in cement production

Replacing clinker with SCMs

- Clinker production: Most expansive and highest emissive step in cement production
- Reduction of these impacts using SCMs.

4600Million of tons of Portland cement (CEMBUREAU, 2015)

626

Kilograms per capita per year (UNEP, 2016) ~ 5-8%

Anthropogenic CO₂ emissions

(EPA)

~ 25%

by 2050 if no actions are taken

R. Snellings, Assessing, Understanding and Unlocking Supplementary cementitious materials. RILEM TL. 2016

SCMs: definition

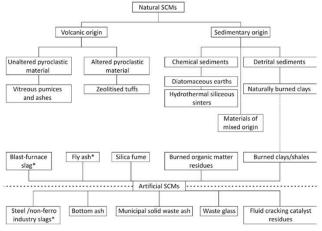
Supplementary Cementitious materials (SCMs) are a group of materials that show hydraulic or pozzolanic behavior.

Hydraulic material: material that can set and harden sub-merged in water by forming cementitious products in a hydration reaction.

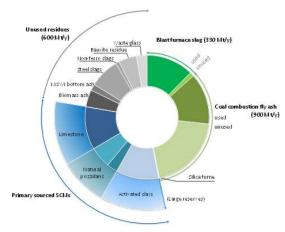
Pozzolan material: Defined by ASTM C618 as a siliceous or siliceous and aluminous material which, in itself, possesses little or no cementitious value but which will, in finely divided form and in the presence of moisture, react chemically with calcium hydroxide (lime) at ordinary temperature to form compounds possessing cementitious properties (Mehta 1987). A quantification of this capability is comprised in the term pozzolanic activity.

SCMs: types

Classifications in terms of:


- chemical and mineralogical composition
- typical particle characteristic
- reactivity or performance
- Origin

1. Natural origin

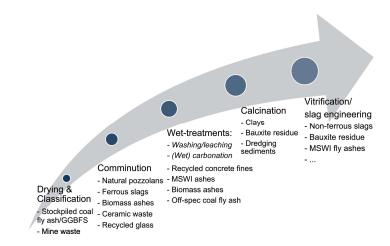

2. Artificial origin

undergone structural modifications as a consequence of manufacturing or production processes.

Thermal activation of kaolin-clays, or waste or by-products from high temperature processes such as blast furnace slags, fly ashes or silica fume

R. Snellings, et al. Supplementary cementitious materials. Reviews in mineralogy and geochemistry, 2012

R. Snellings, et al. Assessing, Understanding and Unlocking Supplementary cementitious materials. RILEM Technical letters, 2016



SCMs: production

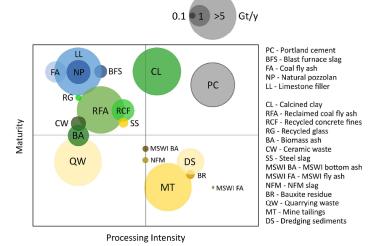
Beneficiation processing needed to enhance performance and/or to remove deleterious components.

Different techniques used to obtain SCMs, arranged in order of increasing process energy intensity and associated cost.

- Simple and relatively inexpensive: drying, crushing, milling, screening, or size classification,
- More energy- and chemical-intensive: acid treatments, <u>hydrothermal processing</u>, and mineral carbonation treatments,
- Calcination and high-temperature remelting or vitrification.

R. Snellings, et al. Future and emerging supplementary cementitious materials. CCR, 2023

SCMs: maturity vs process intensity

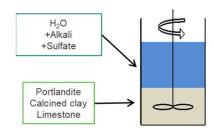

All current, emerging and future SCMs are compared in terms of:

- available reserves or supply volumes (circle areas),
- Maturity
- Beneficiation processing intensity

<u>Upper left corner:</u> widely used SCMs that require relatively modest processing.

<u>Lower right corner:</u> early stages of development or far from the market and require (energy-)intensive processing before being suitable for use as SCM.

<u>Techno-economic feasibility</u> and <u>environmental impact</u> <u>analyses</u> are necessary for each process to assess its viability. Research and development efforts are required for some of these processes before they can become industrially scalable.



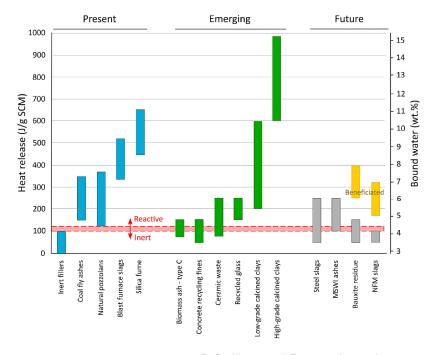
R. Snellings, et al. Future and emerging supplementary cementitious materials. CCR, 2023

Monitoring reactivity: R³ test

- Rapid, Relevant and Reliable (R³). ASTM C1897-20
- Other screening tests already existing, but difficult to correlate results with compressive strength
- Focus on pozzolanic / synergetic reaction only: Adjustment of sulfate and alkali content to reproduce the reaction environment of hydrating blended cements

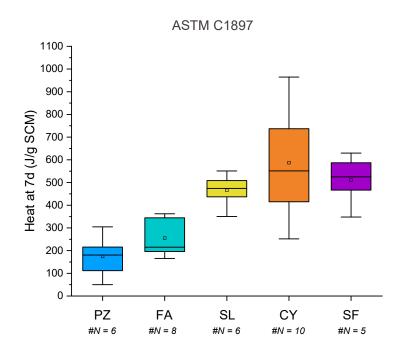
Two ways of measuring the reactivity

Isothermal calorimetry at 40°C Heat release 24h

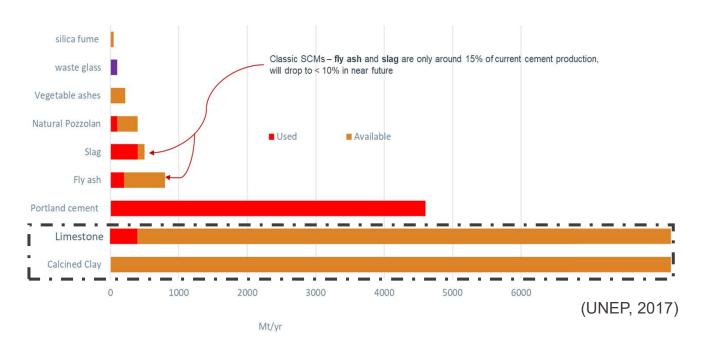


SCMs: reactivity

- SCMs do not perform the same.
- Current, emerging and future SCMs display different Heat release.
- Heat release Reactivity Clinker replacement potential


R. Snellings, et al. Future and emerging supplementary cementitious materials. CCR, 2023

Calcined clays vs. other SCMs


Kaolinitic clay with the lowest kaolinite content is more reactive than most pozzolans commonly used in the industry.

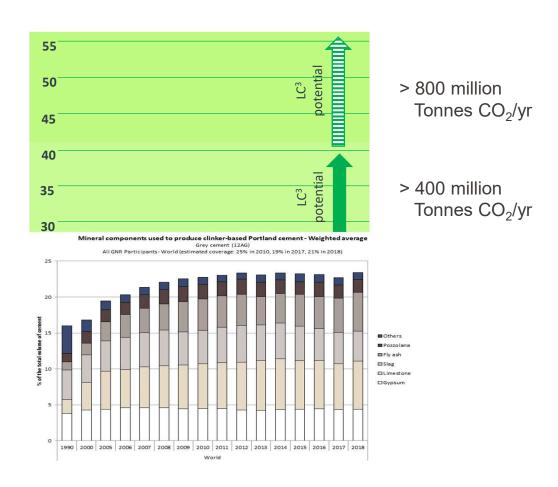
Higher reactivity – Higher clinker replacement potential!

SCMs: Scalability

Limestone and calcined clay are the only SCMs able to replace clinker at scale.

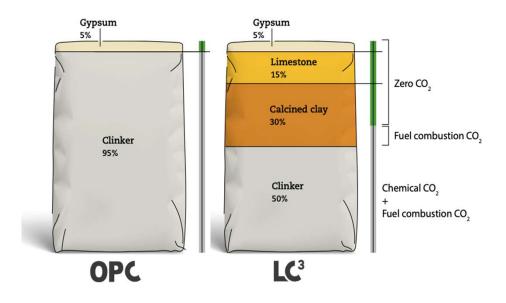
Limited supply of common SCMs

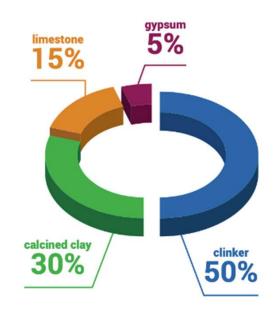
Karen Scrivener, EPFL, Switzerland Vanderley John, USP, Brazil Ellis Gartner, Imperial College, UK


Can be downloaded for free at multiple sites.

Eco-efficient cements: Potential economically viable solutions for a low-CO₂ cement-based materials industry

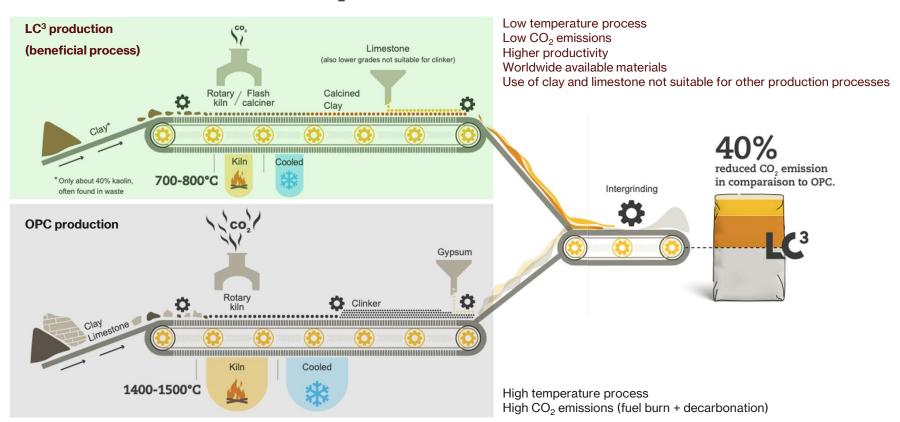
Calcined Clay: only SCM which can expand substitution




Limestone Calcined Clay Cement (LC3)

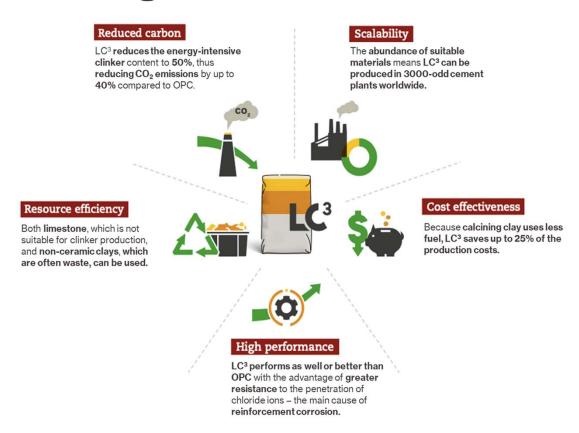
- What is LC³?
- Advantages
- Properties
- History
- Applications
- More

LC³-50



LC³ is a family of ternary blends

LC³ - Production process



World distribution of kaolinitic clays

Unauthorised copying and reproduction of images, videos, results, and content of this presentation by third parties is not


LC³ - Advantages

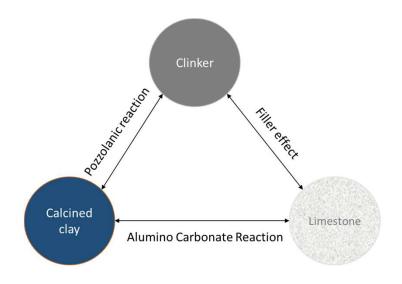
EPPL

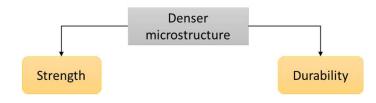
LC³ – Sustainable Development Goals

Limestone Calcined Clay Cement (LC3)

- What is LC³?
- Advantages
- Properties
- History
- Applications
- More

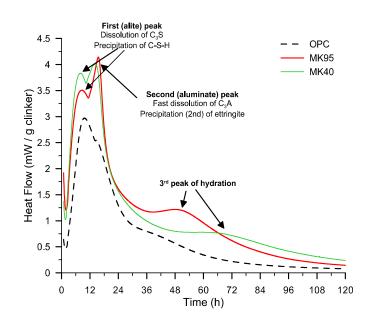
The science behind LC³


Ternary blend.


The **synergy** between calcined clay and limestone enables higher Clinker substitution levels

3 reactions:

- Pozzolanic reaction (Clinker-Calcined Clays)
- Filler effect (Clinker-Limestone)
- <u>Alumino Carbonate Reaction</u> (Calcined clays-Limestone)


Bring to pore refinement. Densification of the microstructure leading to improved strength and durability

Reactivity overview of LC³

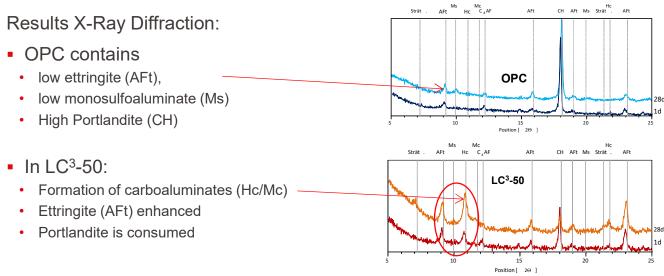
Calcined clay (metakaolin)

Limestone reaction with clinker aluminates

$$C_{3}A + Cc + 11H \longrightarrow C_{4}AcH_{11}$$

$$C_{3}A + 0.5Cc + 0.5CH + 11.5H \longrightarrow C_{4}Ac_{0.5}H_{12}$$

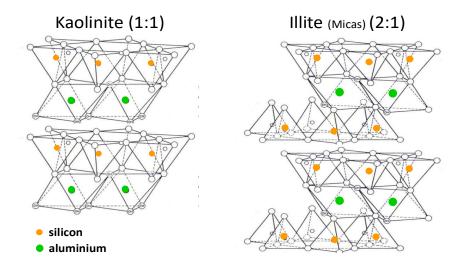
$$C_{3}Ac_{0.5}H_{12}$$


$$C_{4}Ac_{0.5}H_{12}$$
hemicarboaluminate

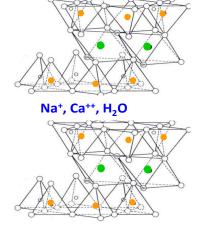
Limestone reaction with aluminates from calcined clay (Synergetic effect in LC³)

$$AS_2 + 0.5Cc + 3.5CH + 8.5H$$
 C₄ $Ac_{0.5}H_{12}$

Reactivity overview of LC³



The combination of calcined clay and limestone favors precipitation of Afm phases (carboaluminates), and stabilize Aft (ettringite)



Highest pozzolanic potential for kaolinitic clays

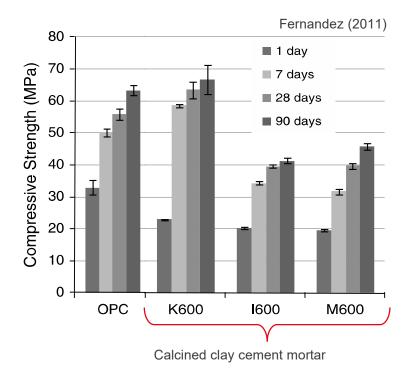
Antoni (2012) Fernandez (2011)

Montmorillonite (Smectites) (2:1)

- Kaolinite
 - Higher amount of hydroxyl groups
 - Hydroxyl groups at the edge of the structural layer
 - More disorder favored during calcination

Calcination

Kaolinite → Metakaolin


 $AS_2H_2 \rightarrow AS_2 + 2H$

Calcination

Kaolinite \rightarrow Metakaolin $AS_2H_2 \rightarrow AS_2 + 2H$

- Calcined clay cement mortars: comparison between calcined kaolinite, illite and montmorillonite
- Much higher strengths obtained for calcined kaolinite blend

We do not need pure kaolinitic clays!
 Already used by other industries

How does the kaolinite content of clay influence the properties of LC³ blends?

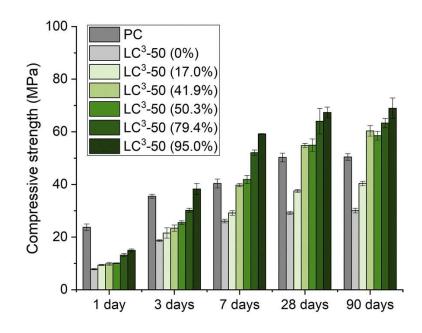
0% of kaolinite

Kaolinite content in clay (%)

Might not be reactive enough

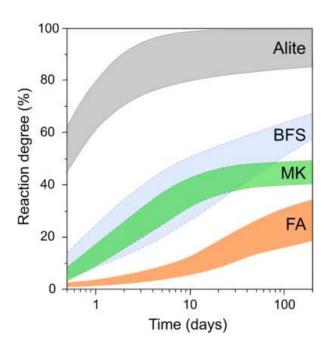
Clays stockpiled as wastes.

Not used by any other industries.


Potential for LC3

100% of kaolinite

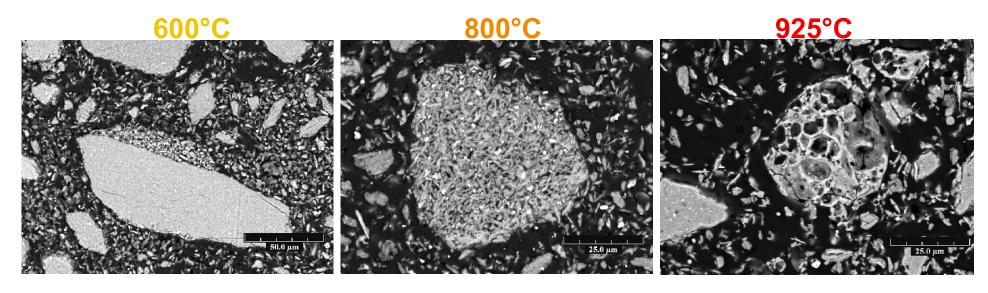
Used by paper, ceramics, cosmetics


- Strength is the ultimate criteria
- Goal: having comparable compressive strength performance to OPC
- LC³ 50 performs equally to OPC starting already at 7days if 50% kaolinitic clays are used
- Higher kaolinitic content clays allow reaching OPC's compressive strength at 3 days
- Blending clays could enable a good use of resources, yet fulfilling target properties

Strength development

- Lower strength developments
- The pozzolanic reaction happens at a deferred time

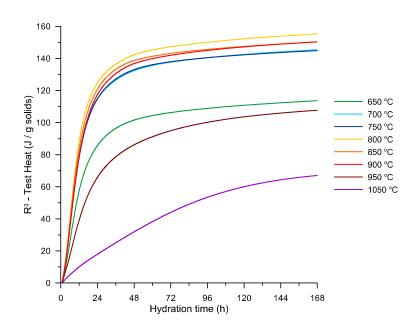
J. Skibsted et al. Reactivity of supplementary cementitious materials, CCR, 2019

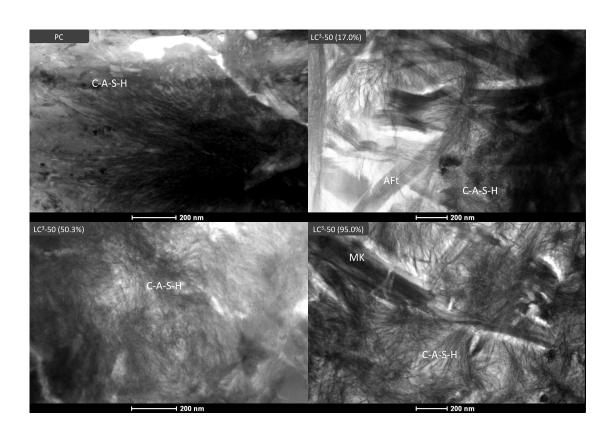


Selecting and Testing clay

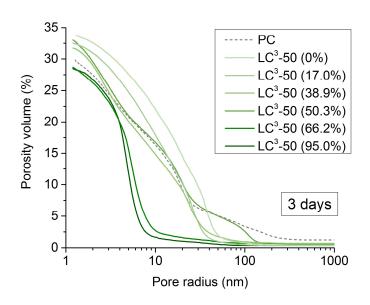
Calcination temperature

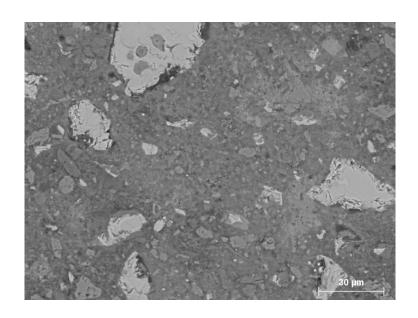
Small clay plates may agglomerate


Higher temps, some sintering, decrease of specific surface, decrease of reactivity


Calcination temperature

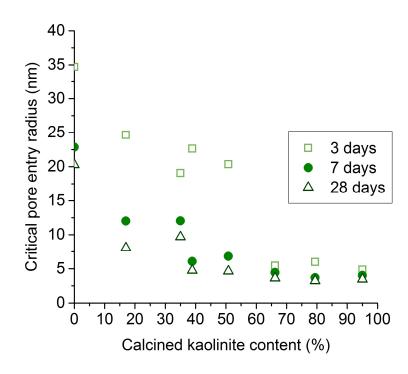
 Optimal calcination range typically between 700 and 800°C


C-A-S-H Morphology



Porosity refinement

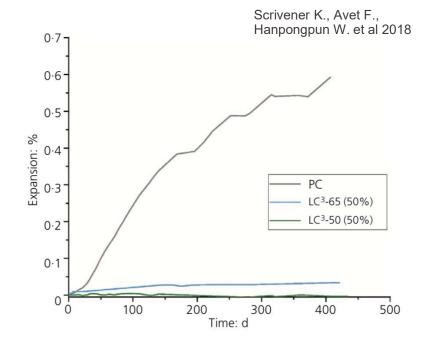
Porosity characterization by MIP: Significant refinement of porosity already at 3 days of hydration



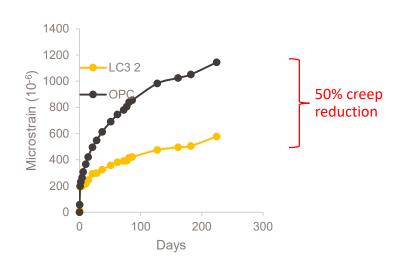
- » Porosity well defined at 3 days for high-grade calcined clays
- » Kinetics depending on the grade of calcined clays

Porosity refinement

- Different kinetics of refinement of porosity
- Porosity already well defined at 3 days for high-grade calcined clays
- Slower refinement for blends with lower kaolinite content
- Limit critical pore entry radius reached for blends with calcined kaolinite content ≥40%



H. Maraghechi et al. Performance of Limestone Calcined clay cemente (LC3) with various kaolinite contents with respect to chloride transportFernandez (2011), Materials and Structures, 2018


Alkali Silicate Reaction (ASR)

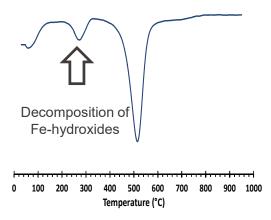
- Avoid reactive aggregates
- Use cement with low alkali content
- Add SCMs (calcined clays, fly ash etc.)
- Add air to compensate for stresses

Much reduced creep

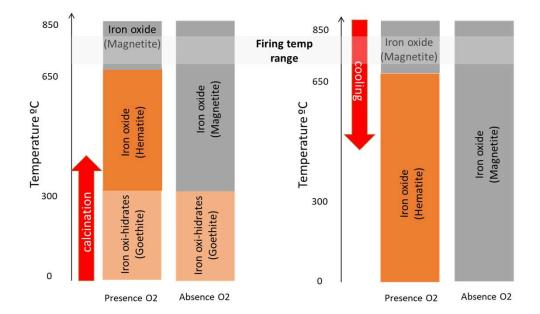
ADVANTAGES:

Lower deflection (longer service life)

Thinner cross section (material saving)



LC³ - Colour control



LC³ - Colour control

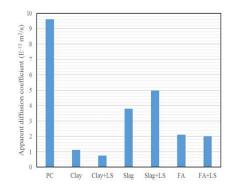
In the firing chamber due to combustion and the high temperature (T≥ 600°C) formation of magnetite prevails

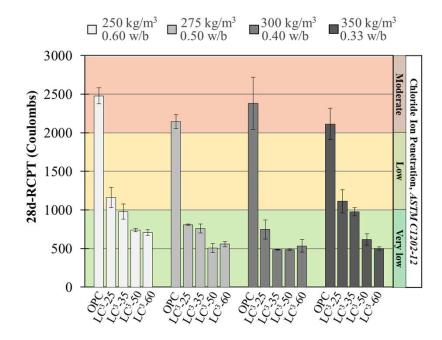
However, during cooling, if the material reaches 600°C and below in a O2 rich environment, hematite can form again

EPFL

LC³ - Colour control at a pilot plant

Exhaustion of oxygen is done by inserting a liquid fuel lance at the cooler. Combustion of the fuel (approximately 0.5% increase in fuel) can do this quickly and safely.

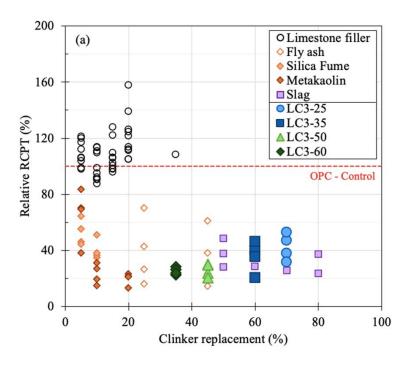




Rapid Chloride Ion Penetration (RCPT)

According to ASTM benchmark:

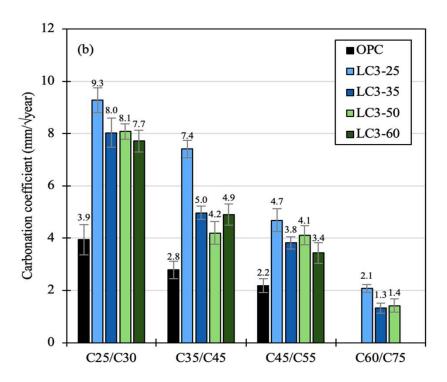
- OPC has a "moderate" chloride ion penetration.
- LC³ has mostly "very low" chloride ion penetration.
- Chloride Ion Penetration is <u>up to</u>
 <u>5x lower</u> in LC³ than in OPC concrete.
- Due to very lo apparent diffusion coefficient



Relative RCPT - LC³ vs other SCMs

RCPT normalised to OPC

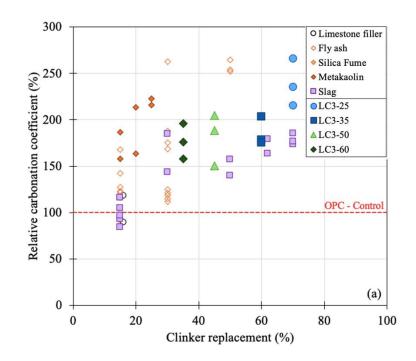
- Limestone filler similar to or lower than OPC
- Fly ash, slag and LC³ best
- LC³ has -20% to -53% RCPT than OPC
- LC³ and slag lowest RCPT highest clinker replacement



55

Natural Carbonation

- LC³ has 1.5 to 2.6 lower carbonation resistance than OPC.
- For higher strength classes, the carbonation depth decreases. LC³ concrete C60/75 has carbonation closer to OPC.


56

Relative Natural Carbonation - LC³ vs other SCMs

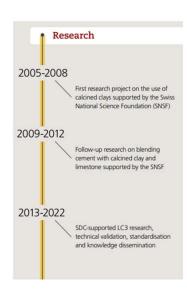
Carbonation coefficient normalised to OPC

- Except for a 15% replacement of slag and limestone filler, blended cement (including LC³) display higher carbonation than OPC.
- LC³ has similar carbonation values to pozzolans but with a higher clinker replacement.
- For higher compressive strengths, the carbonation of LC³ blends gets closer to the OPC and comparable to slag.

57

Limestone Calcined Clay Cement (LC3)

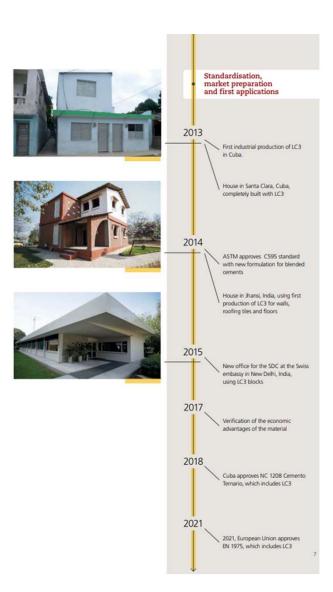
- What is LC³?
- Advantages
- Properties
- History
- Applications
- More


LC³ – The road to market success

2004 – UP TO DATE

RESEARCH

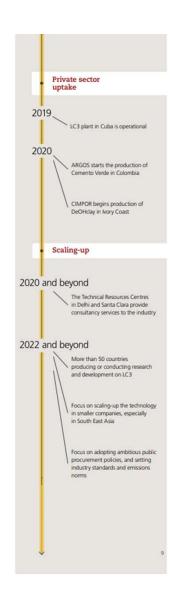
Everything started back in 2004..


Prof Karen Scrivener from EPFL in Switzerland and Prof Fernando Martirena from UCLV in Cuba discussed for the first time about the use of calcined clays for pozzolans.

LC³ – The road to market success

2013 - 2021

STANDARDISATION, MARKET PREPARATION AND FIRST APPLICATIONS


II.

LC³ – The road to market success

2019 – FUTURE

PRIVATE SECTOR UPTAKE SCALING-UP

딢.

LC³ – Recognised during COP28

COP28 "Energy Transition Changemaker" Award winner

LC³ - Applications

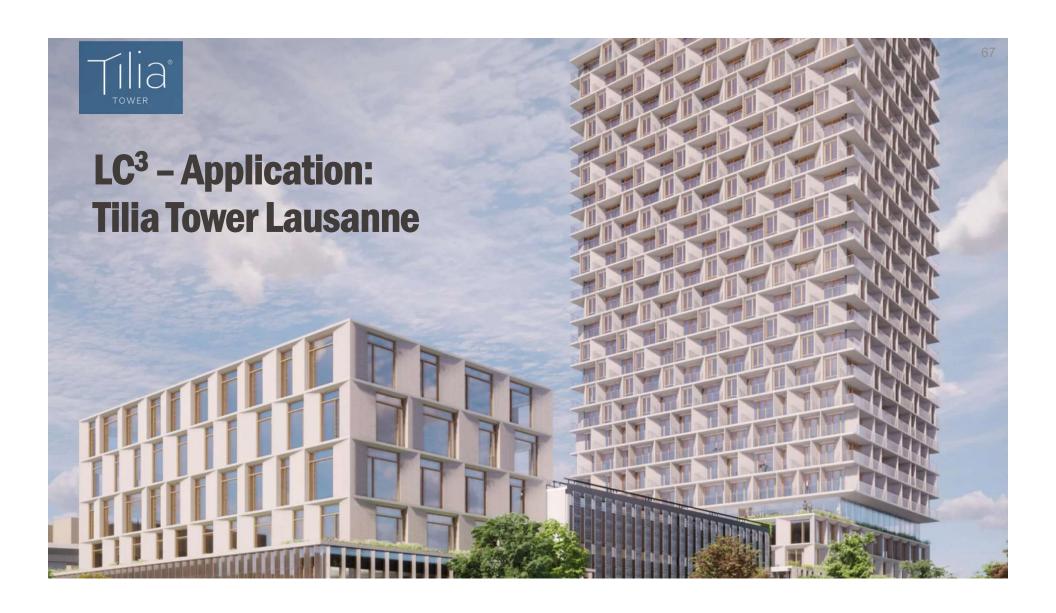
Demo house, India

Swiss embassy, India

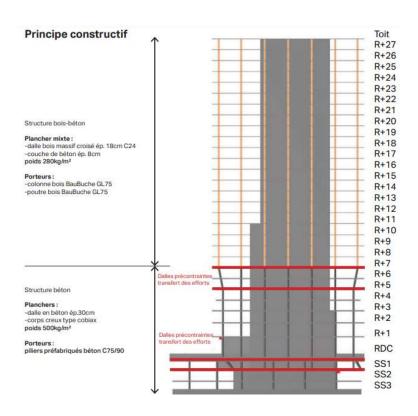
House Cape Town © Kaolin Group, 2023

LC³ application: tunnel and building in Columbia

© Cementos Argos, 2023



LC³ application: highway viaduct in Columbia



© Cementos Argos, 2023

Tilia Tower

The building:

27 floors: -3 to +7 in concrete, + 8 to +27 in wood/concrete Facade made of concrete panels LC3 is used for slabs (30cm thickness) and walls

Sytème porteurs des étages Surouche de béton ép. 8cm Balcon préfabriqué en béton Poutre madae acier- béton profi Delta Poutre madae CLT ép. 18cm CLT ép. 18cm CCT ép. 18cm CD routre en bois baubuche (LT 5 36x4cm)

LC³ – Application: Rolex campus

New Rolex factory in Bulle, Switzerland – expected completion in 2029.

Multi-building complex (project currently under public consultation)

380 m in length, $10'000 \text{ m}^2$ area 98% of its heating will be derived from renewable energy sources.

This project exemplifies sustainability in the construction industry, addressing both embodied carbon (CO₂ emissions from the construction process) and operational carbon (CO₂ emissions from building operations).

H

Limestone Calcined Clay Cement (LC3)

- What is LC³?
- Advantages
- Properties
- History
- Applications
- More

To expand your knowledge about LC3

Thursday December 2nd, 2021
2PM Universal TIME UTC
(3PM CEST/Paris Time)

AVAILABLE ON YOUTUBE

ROC&TOK

Webinar

The technological breakthrough of Limestone
Calcined Clay Cement (LC3): how much further can
(must) we go in the sustainable concrete endeavour?
(+Q&A)

Presentation by Dr. Franco Zunino, Scientist - Postdoctoral
Researcher, LC3 Project, Laboratory of Construction Materials
(LMC), EPFL, Switzerland


To read more about History, Media, Recognitions, Publications

Visit our website:

To see the recent achievements and stay updated about LC3

To join our research on LC3

Apply for one of the semester projects at LMC!

Overview on the last Lecture day pf the course.

7 PhDs projects

2 Post in charge

Semester Projects

Supervisor: Dr. Beatrice Malchiodi

Addressing the workability challenge of low-carbon blended cements: developing a new standard test method for mixing and workability.

Lab: LMC
Sections: SMX

[read on]

Learning objectives

Now, at the end of this class, you are able to...

- Contextualise the importance of implementing blended cement.
- Define and identify different blended cements.
- Understand how to measure the reactivity of SCMs and evaluate their performance.
- Define the advantages of using LC3 amongst the other available SCMs
- Define the properties and best applications for LC3
- See the historical evolution of LC3 and its real and potential impact

Always design in a durable and sustainable way!

Course Schedule

Wk#	Class date	Title	Lecturer
1	11/09/2024	Introduction/literature review	Prof. Karen Scrivener /Dr. Alastair Marsh
2	18/09/2024	Durability of cementitious materials	Dr. Beatrice Malchiodi
3	25/09/2024	Cement hydration	Prof. Karen Scrivener
4	02/10/2024	Characterisation techniques for cementiitous materials	Dr. Federica Boscaro
5	09/10/2024	Presentation 1	
6	16/10/2024	Admixtures	Dr. Federica Boscaro
7	30/10/2024	Presentation 2	
8	06/11/2024	LCA - Life Cycle Analysis	Dr. Alastair Marsh
9	13/11/2024	Sustainability approaches for construction	Dr. Alastair Marsh
10	20/11/2024	LC3 - Limestone Calcined Clay Cement	Dr. Beatrice Malchiodi
11	27/11/2024	Concrete design	Dr. Beatrice Malchiodi
12	04/12/2024	Concrete saving through a better structural design / Q&A on Presentation 3	Porf. David Ruggiero
13	11/12/2024	Presentation 3	
		08:15-09:00 Precast concrete, Sustainability in Concrete and Building Codes	Prof. David Fernandez-Ordoñez
14	18/12/2024	09:10-09:50 Circularity: Reuse of concrete elements	Prof. Corentin Fivet
		09:50-10:00 Semester projects at LMC	

Questions?

Advanced cementitious materials, MSE 420

Lecture 10: SCMs and Limestone Calcined Clay Cement (LC3)

Dr. Beatrice Malchiodi beatrice.malchiodi@epfl.ch 20 November 2024